Distributed MPC for Large Scale Systems using Agent-based Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Distributed MPC for Large Scale Systems using Agent-based Reinforcement Learning
In the present work, distributed control and artificial intelligence are combined in a control architecture for Large Scale Systems (LSS). The aim of this architecture is to provide a general structure and methodology to perform optimal control in networked distributed environments where multiple dependencies between sub-systems are found. Often these dependencies or connections represent contr...
متن کاملA Multi-agent MPC Architecture for Distributed Large Scale Systems
In the present work, techniques of Model Predictive Control (MPC), Multi Agent Systems (MAS) and Reinforcement Learning (RL) are combined to develop a distributed control architecture for Large Scale Systems (LSS). This architecture is multi-agent based. The system to be controlled is divided in several partitions and there is an MPC Agent in charge of each partition. MPC Agents interact over a...
متن کاملPartitioning for Large-scale Systems: A Sequential Distributed MPC Design ?
Large-scale systems involve a high number of variables making challenging the design of controllers because of information availability and computational burden issues. Normally, the measurement of all the states in a large-scale system implies to have a big communication network, which might be quite expensive. On the other hand, the treatment of large amount of data to compute the appropriate...
متن کاملReinforcement Learning in Large Multi-agent Systems
Enabling reinforcement learning to be effective in large-scale multi-agent Markov Decisions Problems is a challenging task. To address this problem we propose a multi-agent variant of Q-learning: “Q Updates with Immediate Counterfactual Rewards-learning” (QUICR-learning). Given a global reward function over all agents that the large-scale system is trying to maximize, QUICR-learning breaks down...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2010
ISSN: 1474-6670
DOI: 10.3182/20100712-3-fr-2020.00097